The Top 10 Topics in Machine Learning Revisited: A Quantitative Meta-Study

نویسندگان

  • Patrick O. Glauner
  • Manxing Du
  • Victor Paraschiv
  • Andrey Boytsov
  • Isabel Lopez Andrade
  • Jorge Augusto Meira
  • Petko Valtchev
  • Radu State
چکیده

Which topics of machine learning are most commonly addressed in research? This question was initially answered in 2007 by doing a qualitative survey among distinguished researchers. In our study, we revisit this question from a quantitative perspective. Concretely, we collect 54K abstracts of papers published between 2007 and 2016 in leading machine learning journals and conferences. We then use machine learning in order to determine the top 10 topics in machine learning. We not only include models, but provide a holistic view across optimization, data, features, etc. This quantitative approach allows reducing the bias of surveys. It reveals new and up-to-date insights into what the 10 most prolific topics in machine learning research are. This allows researchers to identify popular topics as well as new and rising topics for their research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of meta-cognitive learning and self-directed learning on the level of e-learning in the managers of universities: Mediating role of life orientation

Abstract Introduction: E-Learning is one of the most important and favorable topics in the scientific society and they attempt to facilitate the complexities aspects of human being learning.This research aimed to investigate the mediating role of life orientation on the effect of metacognitive learning and self-directed learning on e-learning level in universities’ managers.The present study wa...

متن کامل

Two meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.10121  شماره 

صفحات  -

تاریخ انتشار 2017